Inferring 3D face models from 2D databases

ثبت نشده
چکیده

Parameterized Appearance Models (PAMs) such as Active Appearance Models (AAMs) or Morphable Models (MMs) are a popular tool to model the shape and appearance of faces in images. Although extensively used, PAMs have some limitations to decouple out-of-plane pose, expression and identity changes. For instance, standard AAMs use a unique basis to model pose, identity and expression changes. On the other hand, MMs make use of a 3D face model that allows to recover 3D motion parameters, and decouple pose from identity/expression changes. However, current methods to build 3D face models have several drawbacks: (1) the variability of expression instances in existing databases is limited (2) collecting the data usually involves complex 3D capture setups (3) registering the training samples is a laborious and error prone task. This paper proposes a method to learn a rich 3D face model from large collections of 2D hand-labeled databases containing many subjects under different expressions and poses. We develop an incremental Structure-from-Motion (SfM) approach to build 3D generic face models from 2D instances and a prior 3D model only containing neutral expressions. Experimental results show the effectiveness and robustness of the proposed technique to fit the learnt 3D shape model to previously unseen subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning a generic 3D face model from 2D image databases using incremental Structure-from-Motion

Over the last decade 3D face models have been extensively used in many applications such as face recognition, facial animation and facial expression analysis. 3D Morphable Models (MMs) have become a popular tool to build and fit 3D face models to images. Critical to the success of MMs is the ability to learn a generic 3D face model. Towards that end, major limitations in the current MMs’ proces...

متن کامل

Occlusion Invariant 3D Face Recognition with UMB – DB and BOSPHORUS Databases

Face is having unique identity amongst all other biometric traits. Face recognition is performed using 2D and 3D facial data. 3D face recognition has many advantages over 2D Face recognition. This paper represents the 3D Face recognition challenges while processing the data captured using 3D face scanners. The performance of state-of-art, Face recognition system is affected due to pose, illumin...

متن کامل

On the Dimensionality of Deformable Face Models

Model-based face analysis is a general paradigm with applications that include face recognition, expression recognition, lipreading, head pose estimation, and gaze estimation. A face model is first constructed from a collection of training data, either 2D images or 3D range scans. The face model is then fit to the input image(s) and the model parameters used in whatever the application is. Most...

متن کامل

Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV

In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...

متن کامل

Unsupervised Depth Estimation, 3D Face Rotation and Replacement

We present an unsupervised approach for learning to estimate three dimensional (3D) facial structure from a single image while also predicting 3D viewpoint transformations that match a desired pose and facial geometry. We achieve this by inferring the depth of facial key-points in an input image in an unsupervised way. We show how it is possible to use these depths as intermediate computations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008